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Abstract

An interface crack between two semi-infinite piezoelectric spaces under the action of remote mixed mode loading and
electric flux is considered. The properties of the materials, loading and crack geometry admit to consider a two-
dimensional problem in the plane perpendicular to the crack front. The crack is assumed to be free from mechanical
loading and the limited permeable electric condition holds true. Assuming the electric flux is constant along the crack
area, using the known presentations of all electromechanical fields via a piecewise holomorphic vector function, the
problem is reduced to a vector Hilbert problem and solved in an analytical way. Clear analytical expressions for stresses
and electric displacement as well as for stress and electric intensity factors are derived. As a particular case, a crack in a
homogeneous piezoelectric material is considered and exact analytical formulae are presented for this case. The numer-
ical analysis of the obtained formulae showed that for small values of the electric flux the model of a completely per-
meable crack can be used for any real crack permeability�s. The validity of such an approximation decreases with
increase in the mechanical loading and especially of the electric flux.
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1. Introduction

Because of an intrinsic coupled electromechanical behavior, piezoelectric materials are intensively used in
engineering as sensors, transducers and actuators. But piezoelectric materials often contain many micro de-
fects such as cracks which reduce their strength. The problem of a crack in a piezoelectric material has been
actively studied because of its importance with special attention to the choosing of correct electric conditions
at the crack faces. Because of the complexity of the problem, the extreme cases of electrically permeable
(Parton, 1976; Parton and Kudryavtsev, 1988) and electrically impermeable cracks (Suo et al., 1992) were
mostly used for the investigation of interface cracks in piezoelectric bimaterial compounds. Both types of these
electric conditions were studied in papers by Govorukha and Loboda (2000) and Govorukha et al. (2000).

The validity of a simplified electric boundary condition at the crack faces in a homogeneous piezoelectric
material has been investigated by Dunn (1994), Sosa and Khutoryansky (1996), Kogan et al. (1996), Zhang
et al. (1998), Gao and Fan (1999) by considering a slit crack as a limiting case of an elliptical hole or an
inclusion. Taking into account the exact electric field in the mentioned hole or inclusion, they arrived at
the conclusion that the assumption of a permeable crack is more realistic than that of an impermeable crack
and moreover, that the latter assumption leads to the appearance of an additional singularity of the electric
displacement at the crack tip which depends only on the electric loading.

Another way of considering the electric permeability of the crack medium was suggested by Hao and
Shen (1994). They used the so-called limited permeable boundary condition in which the electric permeabil-
ity of the environment in the crack gap was taken into account by considering the crack as a condensator.
The same way of electric permeability modeling was used in paper by Gruebner et al. (2003), in which the
finite element method was used. The same method together with analytical approach was applied to the
analysis of the similar problem by Wang and May (2003). All these papers were devoted to the investiga-
tions of cracks in a homogeneous material.

Investigation similar to (Hao and Shen, 1994; Gruebner et al., 2003) for a crack in the interface of a pie-
zoelectric bimaterial compound are not known to the authors of this paper. In fact, two simplified cases of
the boundary conditions at the interface crack faces are actively used now, i.e., electrically impermeable
crack and electrically permeable crack, respectively (Suo et al., 1992; Herrmann and Loboda, 2000;
Herrmann et al., 2001; Gao and Wang, 2000).

In the present study, the limited permeable assumption (Hao and Shen, 1994) is applied to the analysis of
an interface crack in a piezoelectric bimaterial compound. An analytical approach for a compound consist-
ing of two linear piezoelectric materials has been used. As a special case, a limited permeable crack in a
homogeneous material has been studied as well.
2. General solution of the basic equations

The constitutive relations for a linear piezoelectric material in the absence of body forces and free
charges can be presented in the form by Pak (1992):
PiJ ¼ EiJKlV K;l; ð1Þ
PiJ ;i ¼ 0; ð2Þ
where
V K ¼
uk; K ¼ 1; 2; 3;

u; K ¼ 4;

�
ð3Þ

PiJ ¼
rij; i; J ¼ 1; 2; 3;

Di; i ¼ 1; 2; 3; J ¼ 4

�
ð4Þ
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and
EiJKl ¼

cijkl; J ;K ¼ 1; 2; 3;

elij; J ¼ 1; 2; 3; K ¼ 4;

eikl; K ¼ 1; 2; 3; J ¼ 4;

�eil; J ¼ K ¼ 4

8>>><
>>>:

ð5Þ
and uk, u, rij and Di are the elastic displacements, electric potential, stresses and electric displacements,
respectively. Furthermore, cijkl, elij and eij are the elastic, piezoelectric and dielectric constants, respectively.
Small subscripts in (1)–(5) and afterwards are always ranging from 1 to 3, capital subscripts are ranging
from 1 to 4 and Einstein�s summation convention is used in (1) and (2).

In papers by Herrmann and Loboda (2000) and Herrmann et al. (2001) similar to the solution by Suo et
al. (1992) the following representations have been derived for a piezoelectric bimaterial plane
½V0ðx1; 0Þ� ¼ Wþðx1Þ �W�ðx1Þ; ð6Þ
tð1Þðx1; 0Þ ¼ GWþðx1Þ �GW�ðx1Þ; ð7Þ
where
½V0ðx1; 0Þ� ¼ V0ð1Þðx1; 0Þ � V0ð2Þðx1; 0Þ; ð8Þ

and G = B(1)D�1, D ¼ Að1Þ � A

ð2ÞðBð2ÞÞ�1
Bð1Þ, W+(x1) =W(x1 + i0), W�(x1) = W(x1 � i0); A(m), B(m) are

known matrices (Suo et al., 1992) related to the upper (m = 1) and lower (m = 2) half-planes, respectively;

V = [u1,u2,u3,u]
T and t = [r13,r23,r33,D3]

T. It is worth to note that the unknown vector-function

W(z) = [W1(z),W2(z),W3 (z),W4(z)]
T is analytic in the whole plane including the bonded parts of the mate-

rial interface (z = x1 + ix3, i ¼
ffiffiffiffiffiffiffi
�1

p
). Moreover the [4 · 4] bimaterial matrix G and the vector function

W(z) are related to the matrix H and the vector function h(z) in Suo et al. (1992) as iG�1 = H,
W(z) = �iHh(z), respectively.

These representations (6) and (7) are useful for the formulation of linear piezoelectric problems concern-
ing the different conditions at the interface of a semi-infinite plane. Particularly, Herrmann and Loboda
(2000) and Herrmann et al. (2001) applied these representations for the investigations of an interface crack
with a contact zone providing electrically permeable and electrically impermeable conditions at its faces,
respectively.
3. Formulation of the problem

Consider an interface crack �b 6 x1 6 b, x3 = 0 between two semi-infinite piezoceramic spaces x3 > 0
(with a matrix Eð1Þ

iJKl of the physical properties) and x3 < 0 (with a matrix Eð2Þ
iJKl) having both the symmetry

class of 6mm with the poling direction x3. The loading at infinity is given by rðmÞ
33 ¼ r, rðmÞ

13 ¼ s, rðmÞ
11 ¼ r1

xxm,
DðmÞ

3 ¼ d, DðmÞ
1 ¼ D1

xm (m = 1 stands for the upper domain, and m = 2 for the lower one). It produces stresses
and displacements which satisfy continuity conditions at the interface. Because, the load does not depend
on the coordinate x2, the plane strain problem in the (x1,x3) plane depicted in Fig. 1 can be considered.
Neglecting the small zones of oscillation (Parton, 1976) we will assume that the crack is completely open
and its faces are free of prescribed mechanical loading and electric charges. Moreover, we assume that
the electric field inside the crack can be found as Ea ¼ �ðuþ � u�Þ=ðuþ3 � u�3 Þ. Taking into account that
D3 = eaEa, one arrives to the electric condition D3 ¼ �eaðuþ � u�Þ=ðuþ3 � u�3 Þ along the crack region which
was analyzed earlier by Hao and Shen (1994). Thus the boundary conditions at the material interface can be
written as
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Fig. 1. Piezoelectric bimaterial plane with a limited permeable interface crack.
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for x1 62 ð�b; bÞ : ½Vðx1; 0Þ� ¼ 0; ½tðx1; 0Þ� ¼ 0; ð9Þ
for x1 2 ð�b; bÞ : rðmÞ

13 ðx1; 0Þ ¼ 0; rðmÞ
33 ðx1; 0Þ ¼ 0; ð10Þ

½D3ðx1; 0Þ� ¼ 0; D3½u3ðx1; 0Þ� ¼ �ea½uðx1; 0Þ�;
where ea is the permeability of the crack medium and the square brackets mean the jump of the correspond-
ing function across the material interface.

On the base of Eqs. (6) and (7) the relation
rð1Þ
33 ðx1; 0Þ þ mj4D

ð1Þ
3 ðx1; 0Þ þ imj1r

ð1Þ
13 ðx1; 0Þ ¼ F þ

j ðx1Þ þ cjF
�
j ðx1Þ ð11Þ
has been obtained by Herrmann et al. (2001), where
F jðzÞ ¼ nj1W 1ðzÞ þ i½nj3W 3ðzÞ þ nj4W 4ðzÞ� ð12Þ

and mjl, njl, cj (j, l = 1,3,4) depend on the material constants and have real values for certain classes of piez-
oceramics. Besides, the functions Fj(z) are analytic in the whole plane including the bonded parts of the
material interface.
4. Determination of the electric flux over the crack region

We now assume that the electric flux is constant along the crack faces, i.e.
Dþ
3 ðx1; 0Þ ¼ D�

3 ðx1; 0Þ ¼ D for x1 2 ð�b; bÞ. ð13Þ

The validity of this assumption will be approximately confirmed later.
Eqs. (11) and (13) together with the interface conditions (10) lead to
F þ
j ðx1Þ þ cjF

�
j ðx1Þ ¼ mj4D ðj ¼ 1; 3; 4Þ for x1 2 ð�b; bÞ; ð14Þ
which is a Riemann problem in the sense by Muskhelisvili (1953). For x1 62 (�b,b), the relation
F þ

j ðx1Þ ¼ F �
j ðx1Þ is valid, and therefore one can write by means of Eq. (11) and the remote prescribed elec-

tromechanical loads at infinity the conditions
F jðzÞjz!1 ¼ ~rj � i~sj ð15Þ

for the functions Fj(z), where ~rj ¼ 1

rj
ðrþ mj4dÞ, ~sj ¼ �mj1s=rj, rj = (1 + cj) (j = 1,3,4).
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By introducing the new function
UjðzÞ ¼ F jðzÞ �
mj4D
1þ cj

ð16Þ
having the same properties as Fj(z), Eqs. (14) and (15) take the form
Uþ
j ðx1Þ þ cjU

�
j ðx1Þ ¼ 0 ðj ¼ 1; 3; 4Þ for x1 2 ð�b; bÞ; ð17Þ

UjðzÞjz!1 ¼ r�
j � is�j ; ð18Þ
where r�
j ¼ 1

rj
½rþ mj4ðd � DÞ�; s�j ¼ ~sj, (j = 1,3,4).

According to the results by Muskhelisvili (1953) the solution of the problem (17) and (18) has the form
UjðzÞ ¼ X jðzÞðr�
j � is�j Þðz� 2ibejÞ; ð19Þ
where X jðzÞ ¼ ðzþ bÞ�1=2þiejðz� bÞ�1=2�iej , ej ¼
ln cj
2p .

By use of Eq. (12) the relation
nj1½u01ðx1; 0Þ� þ ifnj3½u03ðx1; 0Þ� þ nj4½u0ðx1; 0Þ�g ¼ F þ
j ðx1Þ � F �

j ðx1Þ ð20Þ
can be derived. Moreover, since from (17) U�
j ðx1Þ ¼ �Uþ

j ðx1Þ=cj for x1 2 (�b,b) and therefore
F þ

j ðx1Þ � F �
j ðx1Þ ¼

cjþ1

cj
Uþ

j ðx1Þ holds, one can get
nj1½u01ðx1;0Þ� þ ifnj3½u03ðx1;0Þ� þ nj4½u0ðx1;0Þ�g ¼
cj þ 1

cj
ðr�

j � is�j Þðx1 þ bÞ�1=2þiejðx1 � bÞ�1=2�iejðx1 � 2ibejÞ.

ð21Þ

By integrating this equation, one arrives to the formula
nj1½u1ðx1; 0Þ� þ ifnj3½u3ðx1; 0Þ� þ nj4½uðx1; 0Þ�g ¼
cj þ 1

cj
ðr�

j � is�j Þ
x1 þ b
x1 � b

� �iej ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � b2

q
for x1 2 ð�b; bÞ.

ð22Þ

The analysis shows that for the ceramics of the symmetry class of 6mm with the poling direction x3, the

relations n41 = 0, e4 = 0, c4 = 1 are valid (Herrmann et al., 2001). Because of this, the equations
n13½u3ðx1; 0Þ� þ n14½uðx1; 0Þ� ¼ Im
c1 þ 1

c1
ðr�

1 � is�1Þ
x1 þ b
x1 � b

� �ie1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � b2

q( )
; ð23Þ

n43½u3ðx1; 0Þ� þ n44½uðx1; 0Þ� ¼ �2iðr�
4 � is�4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � b2

q
ð24Þ
can be derived from (22) for x1 2 (�b,b).
These relations are a system of linear algebraic equations for [u3 (x1,0)] and [u(x1,0)] leading to the

solution
½u3ðx1; 0Þ� ¼ D�1fn44H 1ðx1Þ � n14H 2ðx1Þg;

½uðx1; 0Þ� ¼ D�1f�n43H 1ðx1Þ þ n13H 2ðx1Þg;
ð25Þ
where
H 1ðx1Þ ¼
c1 þ 1

c1
ðr�

1 cos aþ s�1 sin aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x21

q
; H 2ðx1Þ ¼ 2r�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x21

q
;

a ¼ e1 ln
bþ x1
b� x1

� �
; D ¼ n13n44 � n43n14.
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Substituting Eq. (25) into the second of relations (11), we arrive to the equation
D ¼ ea
c0ðr�

1 cos aþ s�1 sin aÞn43 � 2r�
4n13

c0ðr�
1 cos aþ s�1 sin aÞn44 � 2r�

4n14
for x1 2 ð�b; bÞ ð26Þ
or the electric flux D at the crack faces. Taking into account that r�
1 and s�1 linearly depend on D, relation

(26) is quadratic equation for D.
It should be mentioned that cosðaÞ and sinðaÞ in Eq. (26) depend on x1 and therefore D is not a constant

along the interval (�1, 1), in general. However for compounds of existing piezoelectric materials, the value
of e1 is rather small (Parton and Kudryavtsev, 1988) and therefore the functions cosðaÞ and sinðaÞ are al-
most constant in the interval (�1, 1). For example for the bimaterial compound PZT4/PZT5 the value
e1 = 0.01290 is found. Thus, the variations of cosðaÞ and sinðaÞ for this bimaterial compound as well as
for others are negligible and the approximations cosðaÞ � 1, sinðaÞ � 0 can be assumed with high accuracy.
In this case, Eq. (26) takes the form
D ¼ ea
c0r

�
1n43 � 2r�

4n13
c0r

�
1n44 � 2r�

4n14
ð27Þ
and can be reformulated as
g1D
2 þ g2Dþ g3 ¼ 0; ð28Þ
where
g1 ¼ 2r1m44n14 � c0r4m14n44; g2 ¼ c0r4ðs1n44 þ eam14n43Þ � 2r1ðs4n14 þ eam44n13Þ;
g3 ¼ 2r1ean13s4 � c0r4ean43s1; s1 ¼ rþ m14d; s4 ¼ rþ m44d. ð29Þ
An analytical investigation and the numerical evaluation of Eq. (28) showed that one root of this equa-
tion is not in agreement with physical consideration. For example, it remains finite and relatively large for
ea ! 0, i.e. in case of an impermeable crack. Therefore, it is easy to choose the physically relevant root of
(28) and only this root is used in the following analysis. Thus, the solution of Eq. (28) yields the electric flux
D for x1 2 (�b,b), which is constant according to our assumption.
5. Electromechanical fields and intensity factors

By means of relations (11), (16) and (19) and in view of the properties of the matrix m the stresses and the
electric displacement for x1 > b can be written in the form
rð1Þ
33 ðx1; 0Þ þ m14D

ð1Þ
3 ðx1; 0Þ þ im11r

ð1Þ
13 ðx1; 0Þ ð30Þ

¼ ð1þ c1Þðr�
1 � is�1Þðx1 � 2ibe1Þðx1 þ bÞ�1=2þie1ðx1 � bÞ�1=2�ie1 þ m14D;

rð1Þ
33 ðx1; 0Þ þ m44D

ð1Þ
3 ðx1; 0Þ ¼

2r�
4x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 � b2
q þ m14D. ð31Þ
From the system (30) and (31), expressions for rð1Þ
33 ðx1; 0Þ, D

ð1Þ
3 ðx1; 0Þ and rð1Þ

13 ðx1; 0Þ for x1 > b can be
computed.

The intensity factors (IFs) at the point b are defined as (Herrmann et al., 2001)
K1 þ m14K4 � im11K2

¼ lim
x1!bþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � bÞ

p
ðx1 � bÞie1 ½rð1Þ

33 ðx1; 0Þ þ m14D
ð1Þ
3 ðx1; 0Þ þ im11r

ð1Þ
13 ðx1; 0Þ�; ð32Þ

K1 þ m44K4 ¼ lim
x1!bþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � bÞ

p
½rð1Þ

33 ðx1; 0Þ þ m44D
ð1Þ
3 ðx1; 0Þ�. ð33Þ
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Using (30), (31) one gets for x1 ! b + 0
K1 þ m14K4 � im11K2 ¼
ffiffiffiffiffi
lp
2

r
ð1� 2ie1Þ½rþ m14ðd � DÞ � im11s�eiw; ð34Þ

K1 þ m44K4 ¼
ffiffiffiffiffi
lp
2

r
½rþ m44ðd � DÞ�; ð35Þ
where w = e lnl, a ¼ ðc1þ1Þ2
4c1

and l = 2b is the crack length. From the formulae (34), (35) the analytical expres-

sions for K1, K2 and K4 can be derived.

For comparison, consider now the extreme cases of electrically permeable and electrically impermeable
cracks. An electrically impermeable crack has been analyzed by Herrmann et al. (2001) and the correspond-
ing results directly follow from the formulae (30)–(35) for ea ! 0 (D ! 0). For the case of an electrically
permeable crack combining the Eqs. (38) and (71) of the paper by Herrmann and Loboda (2000) one gets
for x1 ! b � 0
DðpermÞ
3 ðx1; 0Þ ¼ � g41 �

g43g31
g33

� �
2

ffiffiffiffiffi
ap

p
b

rp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� x1

p ½ð2epr� mpsÞ cosxp þ ðrþ 2epmpsÞ sinxp� þ d � g43
g33

r;

ð36Þ
where xp ¼ ep ln
b�x1
l and, furthermore, gij are the components of the matrix G and ep, mp, ap, rp the con-

stants for a permeable crack defined by Herrmann and Loboda (2000). In particular, for a homogeneous
piezoelectric material one finds DðpermÞ

3 ðx1; 0Þ ¼ d � g43g
�1
33 r, which completely coincides with the corre-

sponding expression of the paper by Gao and Wang (2000).

In Fig. 2, the variation of DðpermÞ
3 ðx1; 0Þ along the crack region for the electrically permeable crack

assumption defined by formula (36) (line I) and the value of D from the solution of (28) for ea = 4000e0
(line II) are shown (e0 = 8.85 · 10�12 C/V m). The bimaterial compound PZT4/PZT5 was used and
r = 10 MPa, s = 0 MPa, d = 0.01 C/m2. The obtained results show only in the immediate neighborhood
of the crack tip a visible difference between DðpermÞ

3 ðx1; 0Þ and D. For the remaining part of (�b,b) their val-
ues coincide. This supports our assumption cosðaÞ � 1, sinðaÞ � 0 for the calculation of D. Moreover, it
0.0072

0.0073

0.0074

0.9 0.915 0.93 0.945 0.96 0.975 0.99
x1/b

D
3 

(x
1,0

)[C
/m

2 ]

I

II

Fig. 2. Variation of DðpermÞ
3 ðx1; 0Þ (line I) and D (line II) for the near crack tip region.
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follows from the Table 1 that the IFs for the permeable crack (Herrmann and Loboda, 2000) and for the
limited permeable crack with ea = 4000e0 almost coincide and this justifies again the above-mentioned
assumption. It is worth to be mentioned that the values of D for the same bimaterial compound and for
ea = 10�6e0 (electrically impermeable crack), ea = e0 (air), ea = 2.5 e0 (silicone oil) and ea = 81e0 (water)
are equal 1.23 · 10�8 C/m2, 0.00507 C/m2, 0.00626 C/m2 and 0.00721 C/m2, respectively.

For the same bimaterial compound and for the above crack media, the values of the electric flux D

through the crack and the IFs K1, K2 and K4 are presented in Table 2 for the crack length of 2 mm. A strong
mechanical loading (r = 10 MPa, s = 0 MPa) and a weak external electric flux (d = 0.001 C/m2) were
chosen in this case. The electric permeability of the crack medium was represented in the form ea = ere0.
In Table 3, the corresponding values are given for the same materials, but for weak mechanical loading
(r = 10�3 MPa, s = 0 MPa) and a strong electric flux (d = 0.01 C/m2). It follows from these results
that for the case of a weak electric flux (Table 2) the obtained IFs for all physical values of er P 1 can
be approximated by the corresponding results for the electrically permeable crack. On the other hand,
for the case of a strong electric loading (Table 3) the IF K2 and especially the electric intensity factor K4

for air (er = 1) and silicone oil (er = 2.5) significantly differ from the corresponding values for the electrically
permeable crack.
Table 2
The variation of the electrical flux and IFs for bimaterial compound PZT4/PZT5 under strong mechanical (r = 10 MPa) and weak
electrical (d = 0.001 C/m2) loading

er �D (C/m2) K1 (MPa
ffiffiffiffi
m

p
) K2 (MPa

ffiffiffiffi
m

p
) K4 Æ 10

4 (C/m3/2)

10�6 5.73 · 10�9 0.5599 0.0273 0.561
1 0.00130 0.5597 0.0329 1.29
2.5 0.00154 0.5597 0.0340 1.42
81 0.00175 0.5597 0.0349 1.54
4000 0.00176 0.5597 0.0349 1.55

Table 3
The variation of the electrical flux and IFs for bimaterial compound PZT4/PZT5 under weak mechanical (r = 1000 Pa) and strong
electrical (d = 0.01 C/m2) loading

er D (C/m2) K1 (N/m3/2) K2 (N/m3/2) K4 Æ 10
8 (C/m3/2)

10�6 3.21 · 10�8 �956 4.36 · 104 5.61 · 104

1 0.00999 55.9 5.78 4.48
2.5 0.00999 56.0 4.21 2.47
81 0.00999 56.0 3.51 1.57
4000 0.00999 56.0 3.49 1.55

Table 1
Comparison of the IFs for the limited permeable crack (er = 4000) with the exact values for permeable crack for bimaterial compound
PZT4/PZT5 and r = 10 MPa, d = 0.001 C/m2

K1 (MPa
ffiffiffiffi
m

p
) K2 (MPa

ffiffiffiffi
m

p
) K4 (C/m

3/2)

Permeable crack 0.5597 0.03492 1.542 · 10�4

Limited permeable crack with er = 4000 0.5597 0.03494 1.546 · 10�4
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6. A crack in a homogeneous piezoelectric material

For the sake of clarity, consider now the special case of a homogeneous piezoelectric material. In this
case, the solution obtained above can be evaluated for e1 = 0, c1 = 1. Moreover, since the relations
cosðaÞ ¼ 1, sinðaÞ ¼ 0 are exact now, Eqs. (27) and (28) are exact as well and the assumption concerning
D being constant along the interval (�b,b) is valid without any error.

In case of a homogeneous material the formula (30) attains the form
rð1Þ
33 ðx1; 0Þ þ mj4D

ð1Þ
3 ðx1; 0Þ þ imj1r

ð1Þ
13 ðx1; 0Þ ¼ 2ðr�

j � is�j Þ
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 � b2
q þ mj4D for x1 62 ð�b; bÞ. ð37Þ
Considering the real part of (37) for j = 1 and j = 4 leads to
rð1Þ
33 ðx1; 0Þ ¼ r

x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � b2

q ; ð38Þ

Dð1Þ
3 ðx1; 0Þ ¼ ðd � DÞ x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 � b2
q þ D for x1 62 ð�b; bÞ. ð39Þ
Next, we introduce the stress and electric intensity factors as (Parton and Kudryavtsev, 1988)
K1 ¼ lim
x1!bþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � bÞ

p
rð1Þ
33 ðx1; 0Þ; K2 ¼ lim

x1!bþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � bÞ

p
rð1Þ
13 ðx1; 0Þ; ð40Þ

K4 ¼ lim
x1!bþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � bÞ

p
Dð1Þ

3 ðx1; 0Þ. ð41Þ
The formulae (38) and (39) lead to the following expressions for these IFs:
K1 ¼
ffiffiffiffiffiffi
pb

p
r; K2 ¼

ffiffiffiffiffiffi
pb

p
s; K4 ¼

ffiffiffiffiffiffi
pb

p
ðd � DÞ. ð42Þ
Note that definitions (40), (41) and the formulae (42) follow from the definitions (32), (33) and formulae
(34), (35) provided e1 = 0, c1 = 1.

It is worth to mention that neither the stress rð1Þ
33 ðx1; 0Þ nor the IF K1 depend on the electric flux d. More-

over, the obtained expressions for the IFs completely coincide with the associated results of the paper by
Hao and Shen (1994).

Using formulae (22) and (25) for a homogeneous material, the expressions for [u1(x1,0)], [u3(x1,0)] and
[u(x1,0)] take the form
½u1ðx1; 0Þ� ¼ �m11n�1
11 s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x21

q
;

½u3ðx1; 0Þ� ¼ ½#11rþ #12ðd � DÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x21

q
;

½uðx1; 0Þ� ¼ ½#21rþ #22ðd � DÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x21

q
;

ð43Þ
where #11 = D�1(n44 � n14), #12 = D�1(m14n44 � m44n14), #21 = D�1(n13 � n43), #22 = D�1(m44n13 � m14n43).
According to formulae (38), (39), the stress and the electric displacement can asymptotically approxi-

mated for x1 ! b + 0 in the form
rð1Þ
33 ðx1; 0Þ ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2ðx1 � bÞ

s
; rð1Þ

13 ðx1; 0Þ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2ðx1 � bÞ

s
; Dð1Þ

3 ðx1; 0Þ ¼ ðd � DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2ðx1 � bÞ

s
. ð44Þ
The energy release rate (ERR) related to the point x1 = b can be introduced as (Parton and Kudryavtsev,
1988)
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G¼ lim
Dl!0

1

2Dl

Z bþDl

b
rð1Þ
33 ðx1;0Þ½u3ðx1�Dl;0Þ�þrð1Þ

13 ðx1;0Þ½u1ðx1�Dl;0Þ�þDð1Þ
3 ðx1;0Þ½uðx1�Dl;0Þ�

n o
dx1.

ð45Þ

Taking into account that Dð1Þ

3 ðx1; 0Þ is not singular at the point x1 ! b � 0 and using expressions (43),
(44) leads to
G ¼ pb
4
½#11r

2 þ ð#12 þ #21Þrðd � DÞ þ #22ðd � DÞ2 � m11n�1
11 s

2�. ð46Þ
The numerical analysis of the obtained formulae has been performed for two types studies. First,
r = 10 MPa, s = 0, d = 0.01 C/m2 and various values of ea were chosen. Second, r = 10 MPa, s = 0,
ea = 8.85 · 10�12 C/V m and several magnitudes of d have been applied. The obtained results are in very
good agreement with the corresponding FEM values in the paper by Gruebner et al. (2003).

For a crack of 2-mm length in the homogeneous material PZT4 and for the same crack media as in the
previous tables, the values of the electric flux D through the crack, the IF K4 and the ERR G are presented
in Table 4. A strong mechanical loading (r = 10 MPa) and a weak external electric flux (d = 0.001 C/m2)
were chosen in this case and different electric permeabilities were defined by the coefficient er. In Table 5, the
corresponding results are given for the same material under a moderate mechanical loading (r = 1 MPa)
and a very strong external electric flux (d = 0.03 C/m2). Similarly to the above conclusion concerning a
bimaterial compound for all physical values of er P 1, it can be seen that for a weak external electric flux
(Table 4) the obtained electric IF K4 and the ERR G are in good agreement with the corresponding results
for the electrically permeable crack. However for the strong electric loading (Table 5), both the IF K4 and
the ERR G are in good agreement with the associated values for the electrically permeable crack only for
water (er = 81).

Finally, it is worth to discuss an interesting phenomenon connected with the nonlinearity of the problem
studied. In Table 6, the results are presented for a mechanical loading and an electric flux increased pro-
portionally 10 times with respect to the loading corresponding to Table 4. It seems that the values of IF
4
riation of the electrical flux, the electrical IF and the ERR for a crack in homogeneous material PZT4 under strong mechanical
0 MPa) and weak electrical (d = 0.001 C/m2) loading

�D (C/m2) K4 Æ 10
4 (C/m3/2) G (N/m)

6.01 · 10�13 0.560 3.31
0.00119 1.23 3.61
0.00137 1.33 3.63
0.00152 1.42 3.63
0.00153 1.42 3.63

5
ariation of the electrical flux, the electrical IF and the ERR for a crack in homogeneous material PZT4 under moderate
nical (r = 1 MPa) and very strong electrical (d = 0.03 C/m2) loading

�D (C/m2) K4 Æ 10
4 (C/m3/2) G (N/m)

3.37 · 10�12 16.8 �1.21 · 102

0.0265 1.97 �1.43
0.0292 0.435 �1.49 · 10�3

0.0297 0.148 36.3 · 10�3

0.0297 0.142 36.3 · 10�3



Table 6
Variations of the same values as in Table 4 for the electromechanical loading 10 times stronger (r = 100 MPa, d = 0.01 C/m2) than in
this table

er �D (C/m2) K4 Æ 10
4 (C/m3/2) G (N/m)

10�6 6.01 · 10�13 5.60 331
1 0.00418 7.95 345
2.5 0.00729 9.69 354
81 0.0148 13.8 363
4000 0.0153 14.2 363
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K4 and the ERR G increase proportionally only for the extreme cases of electrically permeable (er = 4000)
and electrically impermeable cracks (er = 10�6). On the other hand, these quantities together with D show
nonlinear behavior for all cases of a limited permeable crack (er = 1.0,2.5,81).
7. Conclusion

The problem of an interface crack in a piezoelectric bimaterial compound under electromechanical load-
ing is considered. The crack is assumed to be completely opened and limited permeable electric conditions
(11) at its faces are used. By assuming that the electric flux through the crack is constant, the problem is
reduced to the Riemann problem (14), (15) which is solved exactly. The quadratic equation (28) with respect
to the electric flux through the crack is formulated and the conclusion that only one root of this equation is
physically meaningful is found. The analytical formulae (30) and (31) for stresses and electric flux as well as
for the stress and electric intensity factors (34), (35) are derived. It is shown that the results for an electri-
cally impermeable crack follow from the obtained formulae if the permeability ea of the crack medium tends
to zero. Furthermore, the results found by means of those formulae for large values of ea are in very good
agreement with the corresponding results for the electrically permeable crack (Herrmann and Loboda,
2000). In particular, the latter results confirm the validity of the assumption concerning the electric flux
being constant along the crack faces.

As a special case of the obtained solution, a crack in a homogeneous piezoelectric material is analyzed.
In this case, the electric flux is exactly constant along the crack faces and, therefore, the obtained results are
exact as well. Formulae (38) and (39) for normal stresses and electric displacement become very simple in
this case, and the stress and electric intensity factors (42) together with the energy release rate (46) are rep-
resented via the components of the electromechanical loading in analytical way.

Numerical results are given for the bimaterial compound PZT4/PZT5 and for crack in the homogeneous
piezoelectric material PZT4. In the latter case, all computations demonstrate an excellent agreement with
the corresponding results of the paper by Gruebner et al. (2003) performed by means of FEM. It follows
from the obtained results that independent of the materials they are in good agreement with the corre-
sponding results for the electrically permeable crack for weak electric fluxes. Increasing the electric flux
(and the mechanical loading as well) leads to an increase of the difference between the mentioned values
and the approximation of the crack medium as electrically permeable gets poor. Finally, it has been dem-
onstrated by means of Tables 4 and 6 that the dependence of the electric flux through the crack and the
dependence of the intensity factors and the ERR on the applied electromechanical loading are nonlinear.
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